

Welcome to commonutilslib’s documentation!

Contents:

	commonutilslib
	Development Workflow

	Important Information

	Project Features

	Installation

	Usage

	Contributing
	Submit Feedback

	commonutilslib
	commonutilslib package

	Credits
	Development Lead

	Contributors

	History

	0.0.1 (26-02-2019)

	0.1.0 (26-02-2019)

	0.1.1 (18-10-2019)

	0.1.2 (18-10-2019)

	0.1.3 (26-04-2021)

	0.1.4 (08-06-2021)

Indices and tables

	Index

	Module Index

	Search Page

commonutilslib

A library with some common utility methods for python like tempdir and Pushd

	Documentation: https://common-utils.readthedocs.io/en/latest/usage.html

Development Workflow

The workflow supports the following steps

	lint

	test

	build

	document

	upload

	graph

These actions are supported out of the box by the corresponding scripts under _CI/scripts directory with sane defaults based on best practices.
Sourcing setup_aliases.ps1 for windows powershell or setup_aliases.sh in bash on Mac or Linux will provide with handy aliases for the shell of all those commands prepended with an underscore.

The bootstrap script creates a .venv directory inside the project directory hosting the virtual environment. It uses pipenv for that.
It is called by all other scripts before they do anything. So one could simple start by calling _lint and that would set up everything before it tried to actually lint the project

Once the code is ready to be delivered the _tag script should be called accepting one of three arguments, patch, minor, major following the semantic versioning scheme.
So for the initial delivery one would call

$ _tag –minor

which would bump the version of the project to 0.1.0 tag it in git and do a push and also ask for the change and automagically update HISTORY.rst with the version and the change provided.

So the full workflow after git is initialized is:

	repeat as necessary (of course it could be test - code - lint :))

	code

	lint

	test

	commit and push

	develop more through the code-lint-test cycle

	tag (with the appropriate argument)

	build

	upload (if you want to host your package in pypi)

	document (of course this could be run at any point)

Important Information

This template is based on pipenv. In order to be compatible with requirements.txt so the actual created package can be used by any part of the existing python ecosystem some hacks were needed.
So when building a package out of this do not simple call

$ python setup.py sdist bdist_egg

as this will produce an unusable artifact with files missing.
Instead use the provided build and upload scripts that create all the necessary files in the artifact.

Project Features

	Please refer to USAGE.rst

Installation

At the command line:

$ pip install commonutilslib

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv commonutilslib
$ pip install commonutilslib

Or, if you are using pipenv:

$ pipenv install commonutilslib

Usage

To develop on commonutilslib:

The following commands require pipenv as a dependency

To lint the project
_CI/scripts/lint.py

To execute the testing
_CI/scripts/test.py

To create a graph of the package and dependency tree
_CI/scripts/graph.py

To build a package of the project under the directory "dist/"
_CI/scripts/build.py

To see the package version
_CI/scipts/tag.py

To bump semantic versioning [--major|--minor|--patch]
_CI/scipts/tag.py --major|--minor|--patch

To upload the project to a pypi repo if user and password are properly provided
_CI/scripts/upload.py

To build the documentation of the project
_CI/scripts/document.py

To use commonutilslib in a project:

Working with Pushd:

from commonutilslib import Pushd

import os
with Pushd(some_path) as pushd:
 print(f'Doing things in {os.getcwd()} coming from {pushd.original_dir} and then returning back')

Working with tempdir:

from commonutilslib import tempdir

import os
with tempdir():
 print(f'Doing things in temporary directory {os.getcwd()} and deleting after done')

Working with Hasher:

from commonutilslib import Hasher

hasher = Hasher()
print(hasher.hash_file(some_file_name))
print(hasher.hash_directory(some_directory_name))

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Submit Feedback

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

Get Started!

Ready to contribute? Here’s how to set up commonutilslib for local development.
Using of pipenv is highly recommended.

	Clone your fork locally:

$ git clone https://github.com/schubergphilis/commonutilslib.git

	Install your local copy into a virtualenv. Assuming you have pipenv installed, this is how you set up your clone for local development:

$ cd commonutilslib/
$ pipenv install --ignore-pipfile

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.
Do your development while using the CI capabilities and making sure the code passes lint, test, build and document stages.

	Commit your changes and push your branch to the server:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a merge request

commonutilslib

	commonutilslib package
	Submodules

	commonutilslib.commonutilslib module

	commonutilslib.commonutilslibexceptions module

	Module contents

commonutilslib package

Submodules

commonutilslib.commonutilslib module

Main code for commonutilslib.

	
class commonutilslib.commonutilslib.Hasher(buffer_size=65536)[source]

	Bases: object

Calculated sha1 hashes for files and directories.

	
hash_directory(path)[source]

	Calculates the sha1 hash of the directory in the provided path.

	Parameters

	path (str) – The path to calculate the digest for

	Returns

	The digest of the path

	Return type

	(str)

	
hash_file(file_name)[source]

	Calculates the sha1 hash of the provided file.

	Parameters

	file_name (str) – The filename of the file to calculate the hash for

	Returns

	The hash of the file provided

	Return type

	(str)

	
class commonutilslib.commonutilslib.Pushd(directory_name)[source]

	Bases: object

Implements bash pushd capabilities.

	
cwd = None

	

	
original_dir = None

	

	
class commonutilslib.commonutilslib.RecursiveDictionary[source]

	Bases: dict

Implements recursively updating dictionary.

RecursiveDictionary provides the methods rec_update and iter_rec_update
that can be used to update member dictionaries rather than overwriting
them.

	
iter_rec_update(iterator)[source]

	Updates recursively.

	
rec_update(other, **third)[source]

	Implements the recursion.

Recursively update the dictionary with the contents of other and
third like dict.update() does - but don’t overwrite sub-dictionaries.

	
commonutilslib.commonutilslib.cd(new_directory, clean_up=<function <lambda>>)[source]

	Changes into a given directory and cleans up after it is done.

	Parameters

	
	new_directory – The directory to change to

	clean_up – A method to clean up the working directory once done

	
commonutilslib.commonutilslib.on_error(func, path, exc_info)[source]

	Error handler for shutil.rmtree.

If the error is due to an access error (read only file)
it attempts to add write permission and then retries.

If the error is for another reason it re-raises the error.

Usage : shutil.rmtree(path, onerror=onerror)

2007/11/08
Version 0.2.6
pathutils.py
Functions useful for working with files and paths.
http://www.voidspace.org.uk/python/recipebook.shtml#utils

Copyright Michael Foord 2004
Released subject to the BSD License
Please see http://www.voidspace.org.uk/python/license.shtml

For information about bugfixes, updates and support, please join the Pythonutils mailing list.
http://groups.google.com/group/pythonutils/
Comments, suggestions and bug reports welcome.
Scripts maintained at http://www.voidspace.org.uk/python/index.shtml
E-mail fuzzyman@voidspace.org.uk

	
commonutilslib.commonutilslib.tempdir()[source]

	Creates a temporary directory.

commonutilslib.commonutilslibexceptions module

Custom exception code for commonutilslib.

Module contents

commonutilslib package.

Import all parts from commonutilslib here

Credits

Development Lead

	Costas Tyfoxylos <ctyfoxylos@schubergphilis.com>

Contributors

None yet. Why not be the first?

History

0.0.1 (26-02-2019)

	First code creation

0.1.0 (26-02-2019)

	First official release

0.1.1 (18-10-2019)

	Update template and bumped dependencies.

0.1.2 (18-10-2019)

	Bumped dependencies

0.1.3 (26-04-2021)

	Bumped dependencies.

0.1.4 (08-06-2021)

	Bumped dependencies.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 commonutilslib	

 	
 	
 commonutilslib.commonutilslib	

 	
 	
 commonutilslib.commonutilslibexceptions	

Index

 C
 | H
 | I
 | O
 | P
 | R
 | T

C

 	
 	cd() (in module commonutilslib.commonutilslib)

 	commonutilslib (module)

 	
 	commonutilslib.commonutilslib (module)

 	commonutilslib.commonutilslibexceptions (module)

 	cwd (commonutilslib.commonutilslib.Pushd attribute)

H

 	
 	hash_directory() (commonutilslib.commonutilslib.Hasher method)

 	
 	hash_file() (commonutilslib.commonutilslib.Hasher method)

 	Hasher (class in commonutilslib.commonutilslib)

I

 	
 	iter_rec_update() (commonutilslib.commonutilslib.RecursiveDictionary method)

O

 	
 	on_error() (in module commonutilslib.commonutilslib)

 	
 	original_dir (commonutilslib.commonutilslib.Pushd attribute)

P

 	
 	Pushd (class in commonutilslib.commonutilslib)

R

 	
 	rec_update() (commonutilslib.commonutilslib.RecursiveDictionary method)

 	
 	RecursiveDictionary (class in commonutilslib.commonutilslib)

T

 	
 	tempdir() (in module commonutilslib.commonutilslib)

 All modules for which code is available

	commonutilslib.commonutilslib

 Source code for commonutilslib.commonutilslib

#!/usr/bin/env python
-*- coding: utf-8 -*-
File: commonutilslib.py
#
Copyright 2019 Costas Tyfoxylos
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
#

"""
Main code for commonutilslib.

.. _Google Python Style Guide:
 http://google.github.io/styleguide/pyguide.html

"""

import logging
import os
import shutil
import stat
import tempfile
import hashlib
import pathlib
from contextlib import contextmanager

__author__ = '''Costas Tyfoxylos <ctyfoxylos@schubergphilis.com>'''
__docformat__ = '''google'''
__date__ = '''26-02-2019'''
__copyright__ = '''Copyright 2019, Costas Tyfoxylos'''
__credits__ = ["Costas Tyfoxylos"]
__license__ = '''MIT'''
__maintainer__ = '''Costas Tyfoxylos'''
__email__ = '''<ctyfoxylos@schubergphilis.com>'''
__status__ = '''Development''' # "Prototype", "Development", "Production".

This is the main prefix used for logging
LOGGER_BASENAME = '''commonutilslib'''
LOGGER = logging.getLogger(LOGGER_BASENAME)
LOGGER.addHandler(logging.NullHandler())

[docs]@contextmanager
def cd(new_directory, clean_up=lambda: True): # pylint: disable=invalid-name
 """Changes into a given directory and cleans up after it is done.

 Args:
 new_directory: The directory to change to
 clean_up: A method to clean up the working directory once done

 """
 previous_directory = os.getcwd()
 os.chdir(os.path.expanduser(new_directory))
 try:
 yield
 finally:
 os.chdir(previous_directory)
 clean_up()

[docs]@contextmanager
def tempdir():
 """Creates a temporary directory."""
 directory_path = tempfile.mkdtemp()

 def clean_up():
 shutil.rmtree(directory_path, onerror=on_error)

 with cd(directory_path, clean_up):
 yield directory_path

[docs]def on_error(func, path, exc_info): # pylint: disable=unused-argument
 """
 Error handler for ``shutil.rmtree``.

 If the error is due to an access error (read only file)
 it attempts to add write permission and then retries.

 If the error is for another reason it re-raises the error.

 Usage : ``shutil.rmtree(path, onerror=onerror)``

 # 2007/11/08
 # Version 0.2.6
 # pathutils.py
 # Functions useful for working with files and paths.
 # http://www.voidspace.org.uk/python/recipebook.shtml#utils

 # Copyright Michael Foord 2004
 # Released subject to the BSD License
 # Please see http://www.voidspace.org.uk/python/license.shtml

 # For information about bugfixes, updates and support, please join the Pythonutils mailing list.
 # http://groups.google.com/group/pythonutils/
 # Comments, suggestions and bug reports welcome.
 # Scripts maintained at http://www.voidspace.org.uk/python/index.shtml
 # E-mail fuzzyman@voidspace.org.uk
 """
 if not os.access(path, os.W_OK):
 # Is the error an access error ?
 os.chmod(path, stat.S_IWUSR)
 func(path)
 else:
 raise # pylint: disable=misplaced-bare-raise

[docs]class Pushd:
 """Implements bash pushd capabilities."""

 cwd = None
 original_dir = None

 def __init__(self, directory_name):
 self.cwd = os.path.realpath(directory_name)

 def __enter__(self):
 self.original_dir = os.getcwd()
 os.chdir(self.cwd)
 return self

 def __exit__(self, exception_type, exception_value, traceback):
 os.chdir(self.original_dir)

[docs]class RecursiveDictionary(dict):
 """Implements recursively updating dictionary.

 RecursiveDictionary provides the methods rec_update and iter_rec_update
 that can be used to update member dictionaries rather than overwriting
 them.
 """

[docs] def rec_update(self, other, **third):
 """Implements the recursion.

 Recursively update the dictionary with the contents of other and
 third like dict.update() does - but don't overwrite sub-dictionaries.
 """
 try:
 iterator = other.items()
 except AttributeError:
 iterator = other
 self.iter_rec_update(iterator)
 self.iter_rec_update(third.items())

[docs] def iter_rec_update(self, iterator):
 """Updates recursively."""
 for (key, value) in iterator:
 if key in self and \
 isinstance(self[key], dict) and isinstance(value, dict):
 self[key] = RecursiveDictionary(self[key])
 self[key].rec_update(value)
 else:
 self[key] = value

[docs]class Hasher:
 """Calculated sha1 hashes for files and directories."""

 def __init__(self, buffer_size=65536):
 logger_name = u'{base}.{suffix}'.format(base=LOGGER_BASENAME,
 suffix=self.__class__.__name__)
 self._logger = logging.getLogger(logger_name)
 self.buffer_size = buffer_size

[docs] def hash_file(self, file_name):
 """Calculates the sha1 hash of the provided file.

 Args:
 file_name (str): The filename of the file to calculate the hash for

 Returns:
 (str): The hash of the file provided

 """
 digest = hashlib.sha1()
 digest = self._get_digest_of_file(digest, file_name, self.buffer_size)
 return digest.hexdigest()

[docs] def hash_directory(self, path):
 """Calculates the sha1 hash of the directory in the provided path.

 Args:
 path (str): The path to calculate the digest for

 Returns:
 (str): The digest of the path

 """
 digest = hashlib.sha1()
 absolute_path = pathlib.Path(path).absolute()
 if not pathlib.Path.is_dir(absolute_path):
 self._logger.error('Directory "%s" does not exist', absolute_path)
 return digest.hexdigest()
 self._logger.debug('Calculating hash for directory "%s"', absolute_path)
 for root, _, files in sorted(os.walk(path)):
 for names in sorted(files):
 file_path = os.path.join(root, names)
 # Hash the path and add to the digest to account for empty files/directories
 digest.update(hashlib.sha1(file_path[len(path):].encode()).digest())
 if os.path.isfile(file_path):
 digest = self._get_digest_of_file(digest, file_path, self.buffer_size)
 return digest.hexdigest()

 def _get_digest_of_file(self, digest, file_name, buffer_size):
 """Calculated the sha1 digest of a file using the provided buffer size.

 Args:
 digest (str): The digest to update
 file_name (str): The filename of the file to update the digest with
 buffer_size (int): The size of the buffer to be used for the digest calculation

 Returns:
 (str): The updated digest

 """
 try:
 original_digest = digest.hexdigest()
 with open(file_name, 'rb') as ifile:
 while True:
 data = ifile.read(buffer_size)
 if not data:
 break
 digest.update(data)
 self._logger.debug('Updated original digest "%s" with file "%s" to "%s"',
 original_digest, file_name, digest.hexdigest())
 except FileNotFoundError:
 self._logger.exception('Could not find/read file %s', file_name)
 return digest

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to commonutilslib’s documentation!

 		
 commonutilslib

 		
 Development Workflow

 		
 Important Information

 		
 Project Features

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Submit Feedback

 		
 Get Started!

 		
 commonutilslib

 		
 commonutilslib package

 		
 Submodules

 		
 commonutilslib.commonutilslib module

 		
 commonutilslib.commonutilslibexceptions module

 		
 Module contents

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.0.1 (26-02-2019)

 		
 0.1.0 (26-02-2019)

 		
 0.1.1 (18-10-2019)

 		
 0.1.2 (18-10-2019)

 		
 0.1.3 (26-04-2021)

 		
 0.1.4 (08-06-2021)

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

